
EVAR: Edge Visual Autoregressive Models via Principled Pruning

Zefang Wang1,2, Yanyu Li3, Mingluo Su1, Simin Xu1, Guanzhong Tian2,†, Huan Wang1,†

1Westlake University 2Zhejiang University 3Snap Inc.

Abstract

Recent advances in generative modeling have catalyzed
demand for on-device single-image synthesis. However,
the stringent compute and memory budgets of resource-
constrained edge hardware hinder the deployment of large-
scale models. Next-scale visual autoregressive (VAR)
models—which predict finer-scale content conditioned on
coarser resolutions—offer strong fidelity, generalization,
and improved inference efficiency, yet remain costly to
run on such devices. We introduce EVAR, an efficient
structured-pruning framework tailored to next-scale VAR
models and edge deployment. EVAR instantiates a prin-
cipled pruning paradigm: it couples Optimal Brain Sur-
geon–guided, Hessian-aware sensitivity estimation with
closed-form weight updates, and augments them with
scale-aligned calibration and compensation. By ground-
ing pruning decisions in second-order optimality and exe-
cuting updates analytically, EVAR mitigates compression-
induced degradation while preserving next-scale condition-
ing—turning sparsification from a heuristic into a disci-
plined procedure. To further address scale-wise gradient
and loss imbalance during fine-tuning, we propose Pro-
gressive Scale-Aware Distillation (PSAD), which leverages
VAR’s multi-scale generative hierarchy to reweight scales
and enforce cross-scale consistency in the pruned model.
On ImageNet single-image generation benchmarks, EVAR
reduces parameter count, memory footprint, and end-to-end
latency while retaining competitive generative quality. On
an iOS deployment, EVAR further cuts single-image latency
from 494 ms to 277 ms (1.8× speedup), with FID changing
only marginally.

1. Introduction

Autoregressive (AR) [7, 21, 42, 51] models have recently
made remarkable progress in visual generation, where their
strong scalability and generalization enable high-quality

† Corresponding authors

VAR d16 (310M)

EVAR (230M)

Edge Single Image Latency: 494m
s

Edge Single Image Latency: 277m
s

FID:3.55

FID:3.91

(a) Original VAR

(b) Compressed VAR With EVAR

Figure 1. EVAR compresses a next-scale VAR-d16 backbone for
edge deployment. (a) Original VAR-d16 with 310M parameters
achieves single-image latency of 494 ms with FID 3.55. (b) After
EVAR’s structured pruning, the model is reduced to 230M param-
eters and reaches 277 ms latency on iPad Pro (M4), corresponding
to about 1.8× speedup with only ∼10% relative FID degradation.

image synthesis and editing. However, conventional AR
models rely on a next-token prediction paradigm and gen-
erate tokens strictly sequentially, so the token-by-token de-
coding requires numerous steps and leads to significant in-
ference latency.

Visual autoregressive (VAR) modeling [5, 6, 13, 23, 24,
27, 37, 43, 44, 49, 52–54] shifts this paradigm from next-
token to next-scale prediction. Instead of emitting tokens
one by one, VAR decodes visual content in a coarse-to-
fine multi-scale hierarchy, generating many tokens in par-
allel within each scale. This design drastically reduces the
number of decoding steps while retaining the expressive
power of AR models, enabling performance comparable to
state-of-the-art diffusion models on image synthesis, super-
resolution, and inpainting. Yet these models remain large
and computationally demanding, making on-device deploy-

ment on resource-constrained edge hardware—where per-
image latency and memory are critical—particularly chal-
lenging. In this work, we focus on single-image generation
in such edge settings.

These constraints motivate efficient model compression
techniques [4, 8, 15, 17, 47, 48, 50] that can reduce the
computational and memory footprint without significantly
degrading generative quality. However, existing pruning
methods are mainly developed for classification networks
or large language models and do not account for the multi-
scale structure and generation mechanism of VAR.

To address this gap, we propose EVAR, a structured com-
pression framework tailored to VAR and edge deployment.
EVAR adopts an OBS-guided [14] adaptive pruning-and-
compensation scheme that assigns block-wise pruning ra-
tios based on Hessian information and explicitly compen-
sates for the effect of removed weights. By coupling prun-
ing decisions with each block’s internal structure and sen-
sitivity, EVAR substantially reduces parameters and com-
putation while preserving generation quality, making VAR
more suitable for deployment on edge devices.

Beyond pruning, we find that next-scale VAR suf-
fers from inherent scale-wise gradient imbalance: high-
resolution scales contain far more tokens than coarse scales,
so standard training objectives over-emphasize fine details
while under-supervising coarse semantics, an issue further
exacerbated after pruning. EVAR addresses this with a
progressive scale-aware distillation (PSAD) scheme that
combines a coarse-to-fine distillation curriculum with scale-
aware loss weighting, rebalancing gradients across scales,
and improving the fine-tuning of pruned VAR models.

To evaluate EVAR under realistic deployment condi-
tions, we build an end-to-end on-device pipeline for single-
image VAR generation on iOS. We convert pruned models
using Apple’s official toolchain, run them in a Swift-based
iOS application with carefully selected compute units, and
measure end-to-end latency and memory usage. On Ima-
geNet, EVAR delivers competitive generative performance
while enabling efficient mobile and edge deployment of
VAR models.

Our contributions can be summarized as follows:
• We introduce EVAR, the first OBS-guided adaptive prun-

ing and compensation framework tailored for VAR mod-
els, providing a principled structured pruning pipeline for
edge deployment.

• We propose progressive scale-aware distillation (PSAD),
which addresses scale-wise gradient imbalance in next-
scale VAR and improves the fine-tuning of pruned models
via a coarse-to-fine, scale-weighted distillation.

• Empirically, we build a practical on-device deployment
and evaluation pipeline for single-image VAR generation
on iOS with CoreML inference engine, reporting 1.8×
speedup with comparable generation quality.

2. Related Work
2.1. Efficient Auto-regressive Image Generation
Autoregressive (AR) models decompose the joint distribu-
tion of an image into a product of conditional distribu-
tions and have been a long-standing backbone of genera-
tive modeling. Early work, such as PixelRNN and Pixel-
CNN [31, 45] generates pixels sequentially with recurrent
or convolutional architectures, but suffers from slow sam-
pling. With the advent of Transformer-based language mod-
els [2, 32, 33, 35, 36, 46], large-scale GPT-style decoders
have been adopted for images, enabling global context mod-
eling and strong scalability. Recent systems, including
VQGAN and RQ-Transformer [7, 19], diffusion–AR hy-
brids [11, 55], and GPT-like image generators such as Lla-
maGen and Lumina-mGPT [26, 42] further push fidelity by
operating in discrete token spaces with powerful next-token
prediction.

To reduce the sequential bottleneck, a line of work stud-
ies partially parallel or masked decoding, e.g., MaskGIT
and MAR [3, 22], and scalable diffusion backbones such
as DiT and LDM [34, 38]. CoDe [6] boosts efficiency
with minimal quality loss via collaboration: large drafter
for small-scale low-frequency, small refiner for large-scale
high-frequency details. This design achieves competitive
quality with substantially fewer decoding steps, and has
been extended to strong AR baselines such as PAR and
AiM [21, 51]. However, most of these works target fidelity
and scalability on powerful GPUs; compression and practi-
cal deployment of next-scale VAR on resource-constrained
edge devices remain largely unexplored, which is the focus
of EVAR.

2.2. Network Pruning
Network pruning [12, 30] is a standard way to reduce com-
putation and memory by removing redundant parameters
from a pre-trained network. According to granularity, meth-
ods are typically divided into unstructured and structured
pruning. Unstructured pruning [9, 10, 14, 18, 39, 40] ze-
ros out individual weights according to saliency scores, en-
abling fine-grained parameter removal at the level of each
matrix entry. This granularity often yields lower accuracy
degradation at a given sparsity compared to structured prun-
ing. However, the resulting irregular sparsity is difficult to
exploit on general-purpose hardware due to poor alignment
with SIMD/SIMT execution, irregular memory access pat-
terns, and limited kernel support; consequently, end-to-end
speedups are frequently modest despite high nominal spar-
sity. Structured pruning [1, 8, 16, 20, 25, 28, 41], removes
entire channels or heads, yielding dense, smaller subnet-
works that better align with standard conv/GEMM kernels
and thus more directly translate into wall-clock accelera-
tion.

1ENCODE Lab Proprietary - Restricted Distribution

qh

kh

vh

qh

kh

vh

2894 956 1350

2103

1169

648 1987

1571

Multi-scale VQVAE Encoding Pre Encoded Calibration

pos_embeddinglvl_embedding

r₁ r₁ r₂ r₁ r₂
1

→
→

[s] pruned Model
ƒө

[M]

🔥

unbalanced training ❌

∑ rs
k

r1 r2 1 2 3 4 r3 1 … 3 4

r*
1

r*
2 1 2 3 4 r*

3 1 … 3 4
Ltask

[s] Student Model

Teacher Model
ƒt

ƒө

[M]

🔥

❄ ∑ rt
k

∑ rs
k

LPSAD

r1 r2 1 2 3 4 r3 1 … 3 4

r*
1

r*
2 1 2 3 4 r*

3 1 … 3 4

Ltask

r1

teaser图

PSAD balanced distill ✅

qh

kh

vh

qh

kh

vh

qh

kh

vh

qh

kh

vh

❄

🔥

��

Pruned
❄
❄

Compensated

Compensated

 Heads Concat Structured OBS Structured Coupling Pruning

✂ ✂

Calibration

r₁
r₁

r₂
r₁

r₂

Raw image

🔥

Figure 2. (a) Pre-encode calibration: a raw image is encoded by the VQ-VAE into a multi-scale residual pyramid, which is then converted
into next-scale VAR tokens with level and positional embeddings to form the pre-encoded calibration set. (b) OBS-guided structured prun-
ing: using the input covariance of the output projection O to approximate its Hessian, EVAR applies structured OBS to prune attention
heads, compensates the remaining heads in closed form, and finally removes the corresponding coupled heads in the shared Q/K/V projec-
tions. (c) Progressive Scale-Aware Distillation (PSAD): standard fine-tuning or vanilla distillation suffers from scale-wise loss imbalance
in next-scale VAR, whereas PSAD reweights and schedules the multi-scale distillation loss to balance supervision across scales, yielding
state-of-the-art post-pruning recovery.

3. Method
3.1. Preliminaries on VAR
Visual Autoregressive (VAR) models [44] reformulate au-
toregressive image modeling by shifting from traditional
next-token prediction to a next-scale prediction scheme. In-
stead of generating an image token by token, VAR divides
the input feature map f ∈ Rh×w×C into K token maps
(r1, r2, . . . , rK) at multiple resolutions, where the spatial
resolution increases with the scale index and the final token
map rK recovers the original feature-map resolution.

The joint distribution over the multi-scale token maps is
factorized as

p(r1, r2, . . . , rK) =

K∏
k=1

p(rk | r1, . . . , rk−1), (1)

where rk ∈ [V]hk×wk denotes the token map at scale k,
and (r1, . . . , rk−1) provides the coarse-to-fine context for
predicting rk. At each autoregressive step k, all tokens in rk
are generated in parallel, conditioned on the previous scales
and their positional embeddings.

3.2. OBS-Guided Structured Pruning for VAR
Network pruning reduces model size and inference cost by
removing redundant or less important parameters. We focus

on post-training structured pruning, where entire channels
or heads are removed so that the resulting model remains
compatible with hardware acceleration. The central chal-
lenge is to reduce parameters while controlling the degra-
dation in generation quality, especially for next-scale VAR
models with long token sequences.

Layer-wise OBS formulation. Following Optimal Brain
Surgeon (OBS), we decompose the global pruning problem
into layer-wise subproblems and minimize the discrepancy
between the original and pruned layer outputs in a local ℓ2
sense. For the l-th layer with weight matrix Wl and input
activation Xl, we consider the objective:

min
Ŵl

∥∥WlXl − ŴlXl

∥∥2
2
, (2)

subject to a target pruning ratio on Wl. A second-order Tay-
lor expansion around Wl yields a quadratic approximation
of the loss in terms of the weight perturbation ∆Wl, with
layer-wise Hessian:

Hl = 2XlX
⊤
l . (3)

For a scalar layer Wl, OBS iteratively identifies and re-
moves the weight w⋆

p that has the smallest effect on the ob-
jective output, and applies a closed-form compensation to

update remaining weights:

w⋆
p = argmin

wp

w2
p(H

−1
l)p,p, δp = −

w⋆
p

(H−1
l)p,p

(H−1
l):,p,

(4)
where (H−1

l)p,p and (H−1
l):,p denote the p-th diagonal en-

try and column of H−1
l , respectively. After pruning wp to

zero, δp is added to the remaining weights.

ExactOBS: row-wise formulation and inverse updates.
To make OBS practical, we follow ExactOBS [9] and ex-
ploit two structural properties of the layer-wise objective.
Dropping the layer index l for clarity, let W ∈ Rdrow×dcol

and Y = WX be the dense layer output. The objective in
Eq. (2) can be rewritten as a sum of row-wise errors:

∥∥WX − ŴX
∥∥2
2

=

drow∑
i=1

∥∥Wi,:X − Ŵi,:X
∥∥2
2
. (5)

Removing a scalar entry [W]i,j only affects the error of the
i-th output row Yi,:; there is no Hessian interaction between
different rows. Thus, each row can be treated as an inde-
pendent least-squares problem with a dcol × dcol Hessian

H = 2XX⊤, (6)

which is shared across all rows. This observation reduces
the problem from a d× d Hessian to a much smaller dcol ×
dcol matrix.

The second ingredient of ExactOBS is an efficient up-
date of the inverse Hessian when a single parameter p is re-
moved. Let H be invertible with inverse H−1, and let H−p

denote the principal submatrix obtained by removing row
and column p from H . As shown in [9], the inverse H−1

−p

can be obtained directly from H−1 via a single Gaussian-
elimination–style update:

H−1
−p =

(
H−1 − 1

(H−1)p,p
H−1

:,p (H
−1)p,:

)
−p

, (7)

where (·)−p denotes removing row and column p. Intu-
itively, we eliminate the influence of parameter p from the
inverse and then drop the corresponding row and column.
This update costs O(d2col) time and does not require recom-
puting any matrix inverses.

Structured OBS for VAR blocks. For next-scale VAR,
we extend the above OBS formulation to operate on struc-
tured units in the pre-encode Transformer blocks at the last
scale. Let W (S) denote a weight matrix in such a block and
H(S) its Hessian. We adopt column pruning as the basic op-
eration and treat groups of columns as structured units (e.g.,
attention heads or FFN channels). For a column index p, the
structured OBS criterion and compensation can be written
as

W (S)
:,p = arg min

W
(S)
:,p

∥∥W (S)
:,p

∥∥2
2
(H(S))−1

p,p, (8)

∆(S) = − W
(S)
:,p

(H(S))−1
p,p

(H(S))−1
p,: , (9)

where (H(S))−1
p,: is the p-th row of (H(S))−1 and ∆(S) is a

compensation matrix with the same shape as W (S). Follow-
ing common practice, we prune attention blocks and FFNs
as basic units: pruning columns in the attention output pro-
jection and FFN down-projection at the last scale reduces
the number of heads and intermediate channels, thereby
shrinking the model size.

Directly applying stepwise column pruning with OBS
is still expensive for VAR due to the large intermedi-
ate dimensions and the interdependence between attention
heads. We therefore adopt an iterative unit-wise pruning-
and-compensation scheme: (i) define attention heads and
FFN channels as structured units; (ii) estimate the OBS er-
ror for each unit using the Hessian statistics from the pre-
encode calibration set (Sec. 3.3); (iii) prune the least impor-
tant unit and apply the compensation update in Eq. (9); and
(iv) repeat until the target sparsity is reached. For FFN lay-
ers, we further use a dynamic grouped strategy that prunes
small groups of low-score channels at a time, starting with
larger groups and gradually decreasing the group size as
pruning progresses. This improves efficiency while keep-
ing the solution close to the column-wise optimum. Em-
pirically, this structured OBS scheme provides strong com-
pression for VAR while maintaining high image generation
quality.

3.3. Pre-Encode Calibration for Next-Scale VAR
OBS-guided pruning in a post-training setting relies criti-
cally on a calibration set: layer-wise Hessian estimates Hl

are constructed from the activations induced by the calibra-
tion samples, and inaccurate calibration directly translates
into suboptimal sensitivity estimates and poor training-free
performance. For next-scale VAR, naive choices such as
using tokens sampled from the model’s own autoregressive
generation pipeline (conditioned on prompts or partial in-
puts) lead to a severe mismatch between the calibration dis-
tribution and the real deployment regime.

To address this, we propose a pre-encode calibration
strategy tailored to next-scale VAR. Instead of calibrating
on model-generated tokens, we construct calibration sam-
ples by encoding real images through the exact VAE and
residual pyramid used by VAR at training and inference
time. Concretely, given a real image x, we first obtain a
latent feature map f ∈ Rh×w×C via the VAE encoder. We
then apply the VAR residual pyramid to decompose f into
multi-scale residual feature maps, and quantize each scale
using VAR’s codebook and interpolation–lookup procedure
to obtain the discrete token maps (r1, . . . , rK). Finally,
we attach the same positional and scale embeddings as in
VAR’s training pipeline, yielding complete multi-scale to-

ken inputs that faithfully reflect the inference-time distribu-
tion.

We use this pre-encode calibration set to estimate Hes-
sian statistics for the Transformer blocks at the last scale
and to drive the OBS-based structured pruning described in
Sec. 3.2. Because the calibration tokens are derived from
real images and respect VAR’s multi-scale residual hierar-
chy, the resulting Hessian estimates are substantially more
stable and informative for sensitivity analysis.

3.4. Progressive Scale-Aware Distillation (PSAD)
Next-scale VAR inherently exhibits scale-wise gradient im-
balance: Higher-resolution scales contain far more to-
kens than coarse scales, so unweighted objectives over-
emphasize fine scales and under-supervise coarse seman-
tics. Pruning reduces model capacity and amplifies this
bias, making global structure harder to preserve for the
compressed model. We address this issue with Progressive
Scale-Aware Distillation (PSAD), which couples a coarse-
to-fine curriculum with scale-aware weighting to rebalance
gradients across scales during post-pruning adaptation.

Setup. Let K be the number of scales and L the full se-
quence length after concatenating tokens from all scales.
Scales are indexed by i ∈ {0, . . . ,K − 1} with token
boundaries b = [b0, . . . , bK] and per-scale counts n =
[n0, . . . , nK−1], where we set

b0 = 0, bK = L, ni = bi+1−bi,

K−1∑
i=0

ni = L. (10)

Thus scale i occupies positions ℓ ∈ (bi, bi+1] in the flat-
tened sequence. Let B denote the batch size. We use the
original (unpruned) VAR as a teacher and the pruned VAR
as a student. With temperature τ > 0, teacher and student
distributions at batch index b and position ℓ are

p
(b,ℓ)
T = softmax

(
z
(b)
T [ℓ, :]/τ

)
, p

(b,ℓ)
S = softmax

(
z
(b)
S [ℓ, :]/τ

)
,

where z
(b)
T , z

(b)
S denote teacher and student logits, respec-

tively. The scale-level KL divergence (normalized by ni) is
defined as

L(i)
KL =

1

B ni

B∑
b=1

bi+1∑
ℓ=bi+1

KL
(
p
(b,ℓ)
T ∥ p(b,ℓ)S

)
. (11)

We include a factor τ2 in the distillation loss below to com-
pensate for the 1/τ2 scaling of gradients with temperature.

1) Discrete stage-wise progression. We first describe
a discrete coarse-to-fine schedule that progressively “un-
locks” scales over training. Define the highest unlocked

scale at optimization step t as

s(t) = max{ i ∈ {0, . . . ,K − 1} | t ≥ ti },
with 0 = t0 < t1 < · · · < tK−1 < T,

(12)

where ti are pre-defined milestones and T is the total num-
ber of steps. Let γi(t) = ⊮[i ≤ s(t)] indicate whether
scale i is active at step t. The progressive, scale-weighted
distillation loss is then

LPSAD(t) = τ2
K−1∑
i=0

γi(t)wi L(i)
KL, (13)

where wi are per-scale weights (specified below). The task
loss aggregates only the unlocked tokens:

Ltask(t) = − 1

B b s(t)+1

B∑
b=1

b s(t)+1∑
ℓ=1

log pS
(
x
(b)
ℓ | x(b)

<ℓ, y
(b)

)
,

(14)
where x

(b)
ℓ denotes the ground-truth token at position ℓ in

sample b, and y(b) denotes the conditioning (e.g., class la-
bel). The total objective is

Ltotal(t) = αLtask(t) + β LPSAD(t), (15)

with α and β balancing data loss and distillation.

2) Continuous soft progression. The hard indicator γi(t)
can lead to abrupt changes in the loss when a new scale
is unlocked. To smooth these transitions, we replace γi(t)
with a continuous gate

γ̃i(t) = min

{
1, max

{
0,

t− ti
∆i

}}
, (16)

where ∆i > 0 controls the ramp-up duration for scale i.
This yields a soft version of PSAD:

Lsoft
PSAD(t) = τ2

K−1∑
i=0

γ̃i(t)wi L(i)
KL. (17)

In practice, we find that the soft schedule improves stabil-
ity over the discrete variant, especially when the model is
heavily pruned.

3) Progressive weights and gradient balancing. Token-
length imbalance implies that, under a naı̈ve uniform
weighting, high-resolution scales with large ni dominate
the gradients. To counter this, we use monotonically de-
creasing scale weights, e.g.,

wi = 2.0− 0.2 i, i = 0, . . . ,K − 1, (18)

(a) Latency–sparsity trade-off on RTX 5090 and
iPad Pro (M4).

(b) Latency vs. batch size on RTX 5090 for differ-
ent sparsity levels.

(c) Per-scale latency of pruned VAR models with
different depths.

Figure 3. Latency behavior of EVAR under different sparsity and deployment settings. (a) As sparsity increases, single-image latency on
the RTX 5090 remains almost unchanged, whereas latency on iPad Pro (M4) drops substantially while FID increases only mildly, indicating
that EVAR makes single-image inference increasingly compute-bound on iOS with acceptable quality loss. (b) On the RTX 5090, dense and
pruned VAR-d16 models show nearly identical latency at batch size 1, and only diverge at larger batch sizes, suggesting that single-image
inference on the GPU is predominantly memory-bound. (c) For different VAR depths (VAR-D16*, VAR-D20*, VAR-D24*, VAR-D30*),
per-scale latency for single-image inference is nearly flat across predicted scales, and pruning (indicated by *) does not introduce scale-
dependent latency spikes, consistent with our width-oriented design.

which is consistent with the heuristic wi ∝ 1/ni. In our ex-
periments with K = 10, this yields positive and monoton-
ically decreasing weights. The effective per-scale gradient
magnitude scales roughly as

gi(t) ∝ (γi(t) or γ̃i(t)) · wi · ni ·
∥∥∇θSL

(i)
KL

∥∥.
The combination of progressive gates (γi, γ̃i) and de-
creasing wi substantially reduces the dominance of high-
resolution scales in the gradient, leading to more balanced
multi-scale updates. In combination with the coarse-to-
fine schedule, PSAD thus rebalances training signals across
scales and significantly improves reconstruction fidelity and
overall generative quality compared with conventional fine-
tuning, particularly in the post-pruning setting.

4. Experimental Results
4.1. Experimental Setups
We evaluate EVAR on the ImageNet-1K [29] dataset us-
ing images of resolution 256 × 256, following exactly the
same data preprocessing and augmentation pipeline as the
original VAR model [44]. For a fair comparison, we adopt
the VAR d16 model as the base backbone on the ImageNet
256× 256 conditional generation benchmark, and compare
against state-of-the-art image generation model families.

We use class-balanced sampling with one image per
class as the pre-encoded calibration set. Enlarging the cali-
bration set yields no significant pruning gains, so we adopt
“one per class” as the default.

After pruning, all models are fine-tuned for 40 epochs
using AdamW with the same optimizer hyper-parameters,
learning-rate schedule, and learning-rate / weight-decay an-
nealing as in the original VAR training. Fine-tuning is per-
formed on 8 NVIDIA 5090 GPUs. Finetuning the pruned
model for one epoch takes slightly over one hour.

For edge deployment, the pruned models are further con-
verted and deployed on an iPad Pro (M4), where we mea-
sure on-device latency for single-image generation.

4.2. Main Results
We compare our method with state-of-the-art pruning and
compression approaches. Table 1 reports model size, pa-
rameter count, FLOPs, and storage reduction before and af-
ter pruning. Within the VAR family, we take VAR-d16 as
our base model and report results for two pruned variants
obtained with EVAR at 20% and 40% structured sparsity.
At 20% pruning (EVAR, 270M parameters), our method
maintains a FID of 3.67 compared to 3.55 for the dense
VAR-d16, while reducing parameters from 310M / 10.97
GB to 270M. At 40% pruning (EVAR, 230M parameters),
EVAR further compresses the model to 230M parameters
with a FID of 3.91, which remains competitive given the
substantial reduction in model size and decoding cost.

As summarized in Tab. 2, EVAR (ours) consistently out-
performs a range of structured pruning baselines across
sparsity levels and fine-tuning regimes. Under the most
challenging setting of 40% sparsity without any fine-tuning,
all methods suffer large quality drops, but EVAR still
achieves the best FID/IS (64.19 / 19.52), whereas other
methods degrade much more severely (e.g., FID > 140
for OBA, Taylor, and LLM-Pruner). At 20% sparsity in
the training-free regime, EVAR attains a substantially lower
FID of 8.86 with strong precision/recall, while all baselines
remain in a much worse range (FID 27.30–152.29), indicat-
ing that OBS-guided pruning with pre-encode calibration is
particularly effective for moderate compression.

The row “Inference set” isolates the effect of calibration:
it uses the same OBS-based pruning as EVAR but replaces
our pre-encode calibration with tokens generated by VAR’s
own inference. Its performance is consistently worse than

Table 1. Generative performance on class-conditional ImageNet-256. “Steps” means the number of model inference to generate one image.

Type Model Parameters Pruning Rate Steps FID↓ IS↑ Precision↑ Recall↑

VAR
VAR-d16 [44] 310M – 10 3.55 274.4 0.84 0.51
VAR-d20 [44] 600M – 10 2.95 302.6 0.83 0.56
VAR-d24 [44] 1.0B – 10 2.33 312.9 0.82 0.59

AR

VQGAN-re [7] 1.4B – 256 5.20 280.3 – –
RQ-Trans.-re [19] 3.8B – 64 3.80 323.7 – –

LlamaGen-L [42] 343M – 576 3.07 256.1 0.83 0.52
LlamaGen-XL [42] 775M – 576 2.62 244.1 0.80 0.57

LlamaGen-XXL [42] 1.4B – 576 2.62 244.1 0.80 0.57

PAR-L [51] 343M – 147 3.76 218.9 0.81 0.60
PAR-XL [51] 775M – 147 2.61 259.2 0.80 0.62

PAR-XXL [51] 1.4B – 147 2.35 263.2 0.80 0.62

AiM-L [21] 350M – 256 2.83 244.6 0.82 0.55
AiM-XL [21] 763M – 256 2.56 257.2 0.82 0.57

pruned VAR-d16

LLM-pruner [28] 230M 40% 10 4.21 53.92 0.81 0.50
OBA [41] 230M 40% 10 4.19 53.43 0.83 0.47

EVAR (ours) 270M 20% 10 3.67 57.78 0.81 0.51
EVAR (ours) 230M 40% 10 3.91 57.23 0.81 0.51

Table 2. Comparison of pruning methods under different sparsity and fine-tuning regimes.

40% sparsity, training-free 20% sparsity, training-free 40% sparsity, 1-epoch

Method FID IS Precision Recall FID IS Precision Recall FID IS Precision Recall

EVAR (ours) 64.19 19.52 0.35 0.53 8.86 48.41 0.74 0.51 4.86 55.61 0.82 0.47
Inference set 138.91 6.39 0.09 0.07 56.87 19.35 0.36 0.57 9.62 44.91 0.77 0.46
LLM-pruner [28] 153.82 5.62 0.09 0.02 35.21 28.95 0.41 0.51 10.82 41.35 0.76 0.45
OBA [41] 142.82 6.35 0.12 0.04 30.54 29.48 0.45 0.57 9.85 44.35 0.78 0.46
Magnitude [12] 180.82 3.90 0.17 0.01 152.29 5.77 0.10 0.01 12.69 25.84 0.65 0.38
Taylor [30] 145.66 6.78 0.12 0.05 27.30 31.48 0.48 0.59 8.35 46.87 0.77 0.46

EVAR (e.g., FID 56.87 vs. 8.86 at 20% sparsity), showing
that structured OBS compensation only works well when
the Hessian is estimated from a precise dataset-aligned cali-
bration set. After one epoch of post-pruning training, EVAR
further improves to FID 4.86 at 40% sparsity, outperforming
all baselines (best non-EVAR FID 8.35 for Taylor), and con-
firming that combining pre-encode calibration, OBS-guided
structured pruning, and our distillation scheme yields the
strongest overall trade-off between compression and gener-
ative quality.

Recent top-performing methods: LLM-Pruner and
OBA. Since existing pruning methods for Transformers
and large language models do not report results on VAR,
we reimplement two structured pruning baselines on VAR-
d16 using the public code: LLM-Pruner [28] and OBA [41].
For both methods, we prune VAR-d16 to a comparable 40%
structured sparsity level and fine-tune for the same number

of epochs as EVAR to ensure a fair comparison.
LLM-Pruner is applied with its default param mix

salience metric, which combines gradient and accumulated-
gradient information to rank structured units. OBA is used
in its structured setting, where sensitivity is estimated via
Hessian–vector products over inter-layer connectivity and
used to prune attention heads and FFN channels in VAR-
d16. The corresponding results for LLM-Pruner, OBA, and
our EVAR models are reported in the last block of Table 1.

4.3. Ablation Study

We ablate the distillation components in EVAR on
ImageNet-1K single-image generation to quantify their ef-
fect on post-pruning recovery. Table 4 reports FID, iOS
single-image latency, and parameter count for the dense
VAR-d16 baseline, the training-free pruned model, and
successive additions of fine-tuning and distillation compo-
nents. Training-free pruning reduces latency from 494 ms

Device Model Compute units Latency (ms) #CPU ops #GPU ops #NPU ops

iPad Pro (M4) EVAR CPU+GPU 277± 2 10 (random category) 8818 0
iPad Pro (M4) EVAR CPU+NPU 1090± 2 274 0 8554
iPad Pro (M4) EVAR All 465± 2 129 3103 5596

Table 3. Operator-level unit assignment in Core ML for a pruned VAR backbone (EVAR) on iPad Pro (M4). Frequent switches across
CPU/GPU/NPU due to NE-unsupported ops inflate latency; pinning to CPU+GPU is fastest for single-image inference.

Method FID ↓ iOS (ms) ↓ Params (M)

Dense 3.55 494 310
Pruned (training-free) 64.00 277 230
+ Fine-tuning (FT) 4.25 277 230
+ Vanilla KD 4.26 277 230
+ Scale-aware weights 3.97 277 230
+ Progressive (PSAD, ours) 3.91 277 230

Table 4. Ablation of the distillation components in EVAR. All
post-pruning variants share the same pruned VAR-d16 backbone,
hence identical latency and parameter counts under the same iOS
deployment setting.

to 277 ms and parameters from 310M to 230M, but severely
degrades FID (64.0). Plain fine-tuning and vanilla KD re-
cover most of the quality (FID ≈ 4.25) while keeping the
same latency/parameter budget, yet still underperform the
dense model. Adding scale-aware weights further improves
FID to 3.97, and enabling the full Progressive Scale-Aware
Distillation (PSAD) yields the best result (FID 3.91), nearly
closing the gap to the dense baseline under the same 277 ms
/ 230M on-device configuration.

4.4. Edge Deployment
Core ML conversion and runtime. For on-device eval-
uation, we convert the pruned VAR-d16 models from Py-
Torch to Core ML (.mlmodel) using coremltools,
and run them on Apple silicon in a Swift-based single-
image generation app on an iPad Pro (M4). The Core ML
runtime performs per-operator scheduling and can automat-
ically switch compute units—CPU, GPU, and Neural En-
gine (NE/NPU)—whenever an operator is unsupported on
the currently selected unit.

Compute-unit behavior. Next-scale VAR contains sev-
eral operators (e.g., positional embeddings and sampling-
related ops) that are not supported on the NE, so enabling
the NE causes frequent fallbacks and handoffs between
CPU, GPU, and NE at batch size 1. Table 3 reports an
operator-level breakdown for EVAR on an iPad Pro (M4)
under three Core ML settings: CPU+GPU, CPU+NPU, and
All. Although CPU+NPU assigns most operators to the
NE, it incurs many CPU ops (274) and yields the highest
latency (1090 ± 2ms). The All setting mixes all three
units (129 CPU ops, 3103 GPU ops, 5596 NPU ops) and
is also slower (494 ± 2ms) due to frequent cross-unit tran-

sitions. In contrast, pinning execution to CPU+GPU avoids
NE-unsupported operators entirely, yields a simple two-unit
schedule (10 CPU ops, 8818 GPU ops), and achieves the
lowest latency (277± 2ms) for single-image inference.

Latency analysis. Figure 3 summarizes the latency be-
havior of EVAR. In Fig. 3(a), increasing sparsity barely
changes single-image latency on the RTX 5090, but sig-
nificantly reduces latency on iPad Pro (M4) with only a
mild FID increase, showing that EVAR is effective in the
edge compute-bound regime. Fig. 3(b) shows that on the
RTX 5090, dense and pruned VAR-d16 models have al-
most identical latency at batch size 1 and diverge only at
larger batch sizes, indicating that single-image inference
on GPU is largely memory-bound. Fig. 3(c) reports per-
scale latency for different VAR depths (VAR-D16*, VAR-
D20*, VAR-D24*, VAR-D30*); the curves are nearly flat
across predicted scales and pruning (*) does not introduce
scale-dependent latency spikes, consistent with our width-
oriented design.

5. Conclusion
This paper introduces EVAR, a principled structured prun-
ing framework for next-scale visual autoregressive (VAR)
models. EVAR combines a pre-encode calibration pipeline
with OBS-guided head/channel pruning and closed-form
compensation, enabling training-free compression that re-
spects the multi-scale conditioning structure of VAR. To
further recover generative quality after pruning, we intro-
duced Progressive Scale-Aware Distillation (PSAD), which
rebalances supervision across scales and mitigates the gra-
dient imbalance inherent to next-scale decoding. On Ima-
geNet 256 × 256 single-image generation, EVAR achieves
substantial reductions in parameters, memory footprint, and
end-to-end latency while preserving competitive FID, IS,
precision, and recall. In particular, a pruned VAR-d16
model on iPad Pro (M4) attains about 1.8× speedup in
single-image latency with only a modest FID increase. With
a practical on-device deployment and evaluation pipeline
for single-image, EVAR demonstrates that next-scale VAR
can be compressed and executed efficiently on edge hard-
ware, offering a practical step toward visual autoregressive
image generation under tight resource constraints.

EVAR: Edge Visual Autoregressive Models via Principled Pruning

Supplementary Material

Appendix Overview
• Section A: Validates generality on LlamaGen-L-256, pre-

serving metrics at 20% sparsity.
• Section B: Reports a 1.8× speedup on iOS devices, ad-

dressing CoreML operator constraints.
• Section C: Compares visual samples, confirming consis-

tency between Linux and mobile deployments.

A. Generalization on LlamaGen

To further investigate the generality of our pruning method,
we conducted experiments on another visual autoregressive
image generation model, LlamaGen. Specifically, we se-
lected LlamaGen-L-256 and applied 20% sparsity pruning,
comparing it against VAR-d16 under the same 20% spar-
sity level. In processing the calibration set for LlamaGen,
since it predicts next tokens, we encoded 256×256 images
to obtain 256 tokens, which served as the pre-encoded cal-
ibration set to guide the structured OBS pruning. Other as-
pects remained consistent with the pruning process for the
VAR model. Since LlamaGen employs next-token gener-
ation rather than next-scale generation, we did not apply
our proposed Progressive Scale-Aware Distillation (PSAD)
method; instead, we used standard fine-tuning. For fairness,
we also applied standard fine-tuning to VAR-d16 as a base-
line comparison.

The consolidated results are presented in Table 5. The
findings indicate that our method generalizes effectively to
other autoregressive architectures, reinforcing its broad ap-
plicability and robustness across diverse model families.

Table 5. Performance comparison with and without fine-tuning.

Model FT FID ↓ IS ↑ Prec. ↑ Rec. ↑

VAR-d16 w/ FT 3.81 60.43 0.84 0.51
w/o FT 8.86 48.41 0.74 0.51

LlamaGen-L w/ FT 3.57 258.3 0.82 0.50
w/o FT 13.65 43.54 0.71 0.48

B. Deployment Details and Further Evaluation

During the conversion from PyTorch to CoreML, we en-
countered a limitation where the current version of coreml-
tools does not support the bicubic interpolation operator.
Consequently, we replaced it with bilinear sampling for
mobile deployment. This operator switch initially caused
the FID of the VAR-d16 model to increase from 3.55 to
9.98. However, after a brief fine-tuning phase of 20 epochs,

the FID recovered to 4.34. While this represents a sys-
tematic increase of approximately 0.78 FID (and a corre-
sponding rise in EVAR from 3.91 to 4.63) compared to
the bicubic baseline, this degradation is strictly attributable
to the toolchain limitation rather than the compression
method. Crucially, the relative quality loss between the
unpruned and pruned models—when both utilize bilinear
sampling—remains within 10%. We anticipate this gap will
vanish as coremltools support evolves.

We evaluated inference latency on iPad and iPhone de-
vices using a robust trimmed mean protocol (20 runs after
5 warmups, excluding outliers). Results in Table 6 reveal
two key findings. First, on iPads, our method maintains a
consistent 1.8× speedup. Second, and most notably, both
the full and 20% sparse models crashed on iPhones due to
memory constraints (OOM). Only the 40% sparsity model
operated successfully. This proves that high-ratio compres-
sion is not merely an accelerator but a strict prerequisite for
deploying large generative models on memory-constrained
edge devices.

Table 6. Inference Time Results on Different Devices (ms).

Device full model 20% Sparsity 40% Sparsity

iPad Pro (M4) 494 439 277
iPad Pro (M2) 791 666 449
iPhone 16 PM crashed crashed 580
iPhone 12 Pro crashed crashed 1778

C. Visual Comparisons
Figure 4 presents a visual comparison between the un-
pruned VAR-d16 baseline and our pruned EVAR model
(40% sparsity) under conditional generation settings. To
demonstrate cross-platform consistency, we provide sam-
ples generated in two distinct environments: a standard
Linux workstation using PyTorch and an actual on-device
deployment via CoreML

It is important to note that the images generated on Ap-
ple devices exhibit minor visual deviations compared to the
PyTorch baseline. These differences stem from the model
conversion process and backend constraints. Most notably,
since coremltools does not currently support bicubic sam-
pling, we substituted it with bilinear sampling. Addition-
ally, there are inherent discrepancies in operator implemen-
tation and fusion strategies between the PyTorch runtime
and the CoreML backend.

Despite these constraints, the pruned EVAR model main-
tains high visual fidelity on mobile devices, closely mirror-
ing the original model’s capabilities.

Figure 4. Qualitative comparison of generated samples. We compare the unpruned VAR-d16 baseline executed on a Linux workstation
(PyTorch) against our pruned EVAR model with 40% sparsity deployed on mobile devices (CoreML). Despite the aggressive compression
and platform constraints, the mobile samples retain high visual fidelity comparable to the baseline.

(a) VAR-d16 on PyTorch (b) EVAR on PyTorch (c) VAR-d16 on CoreML (d) EVAR on CoreML

References
[1] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do

Nascimento, Torsten Hoefler, and James Hensman. Slicegpt:
Compress large language models by deleting rows and
columns. In ICLR, 2024. 2

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language mod-
els are few-shot learners. arXiv preprint arXiv:2005.14165,
2020. 2

[3] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T. Freeman. Maskgit: Masked generative image
transformer. In CVPR, 2022. 2

[4] Tianyi Chen, Luming Liang, Tianyu Ding, Zhihui Zhu, and
Ilya Zharkov. Otov2: Automatic, generic, user-friendly. In
ICLR, 2023. 2

[5] Yongwei Chen, Yushi Lan, Shangchen Zhou, Tengfei Wang,
and Xingang Pan. Sar3d: Autoregressive 3d object genera-
tion and understanding via multi-scale 3d vqvae. In CVPR,
2025. 1

[6] Zigeng Chen, Xinyin Ma, Gongfan Fang, and Xinchao
Wang. Collaborative decoding makes visual auto-regressive
modeling efficient. In CVPR, 2025. 1, 2

[7] Patrick Esser, Robin Rombach, and Björn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 1, 2, 7

[8] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
In CVPR, 2023. 2

[9] Elias Frantar and Dan Alistarh. Optimal brain compres-
sion: A framework for accurate post-training quantization
and pruning. In NeurIPS, 2022. 2, 4

[10] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In ICML, 2023.
2

[11] Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang,
Dinghuai Zhang, Navdeep Jaitly, Joshua M. Susskind, and
Shuangfei Zhai. Denoising autoregressive transformers for
scalable text-to-image generation. In ICLR, 2025. 2

[12] et al Han, Song. Learning both weights and connections
for efficient neural network. Advances in neural information
processing systems, 2015. 2, 7

[13] Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan
Yuan, Bingyue Peng, and Xiaobing Liu. Infinity: Scaling bit-
wise autoregressive modeling for high-resolution image syn-
thesis. In CVPR, 2025. 1

[14] B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain sur-
geon and general network pruning. In NeurIPS, 1993. 2

[15] Haoyu He, Jianfei Cai, Jing Liu, Zizheng Pan, Jing Zhang,
Dacheng Tao, and Bohan Zhuang. Pruning self-attentions

into convolutional layers in single path. TPAMI, 46(5):3910–
3922, 2024. 2

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In ICCV, 2017.
2

[17] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In ICCV, 2017.
2

[18] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-
age. In NeurIPS, 1990. 2

[19] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. arXiv preprint arXiv:2203.01941,
2022. 2, 7

[20] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
ICLR, 2017. 2

[21] Haopeng Li, Jinyue Yang, Kexin Wang, Xuerui Qiu, Yuhong
Chou, Xin Li, and Guoqi Li. Scalable autoregressive image
generation with mamba. arXiv preprint arXiv:2408.12245,
2024. 1, 2, 7

[22] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and
Kaiming He. Autoregressive image generation without vec-
tor quantization. arXiv preprint arXiv:2406.11838, 2024. 2

[23] Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Zhe Lin,
Rita Singh, and Bhiksha Raj. Controlvar: Exploring con-
trollable visual autoregressive modeling. arXiv preprint
arXiv:2406.09750, 2024. 1

[24] Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu,
Bhiksha Raj, and Zhe Lin. Imagefolder: Autoregressive im-
age generation with folded tokens. In ICLR, 2025. 1

[25] Liu Q Ling G, Wang Z. Slimgpt: Layer-wise structured prun-
ing for large language models. In NeurIPS, 2024. 2

[26] Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yi
Xin, Xinyue Li, Qi Qin, Yu Qiao, Hongsheng Li, and Peng
Gao. Lumina-mgpt: Illuminate flexible photorealistic text-
to-image generation with multimodal generative pretraining.
arXiv preprint arXiv:2408.02657, 2024. 2

[27] Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled
decoding 1: One-step sampling of image auto-regressive
models with flow matching. In ICLR, 2025. 1

[28] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner:
On the structural pruning of large language models. In
NeurIPS, 2024. 2, 7

[29] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Imagenet: A large-scale hierarchical image
database. CVPR, 2009. 6

[30] Tyree S Molchanov P, Mallya A. Importance estimation for
neural network pruning. In CVPR, 2019. 2, 7

[31] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Condi-
tional image generation with pixelcnn decoders. In NeurIPS,
2016. 2

[32] OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 2

[33] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan
Lowe. Training language models to follow instructions with
human feedback. In NeurIPS, 2022. 2

[34] William Peebles and Saining Xie. Scalable diffusion models
with transformers. arXiv preprint arXiv:2212.09748, 2022.
2

[35] Alec Radford and Karthik Narasimhan. Improving language
understanding by generative pre-training. Semantic Scholar,
2018. 2

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[37] Sucheng Ren, Yaodong Yu, Nataniel Ruiz, Feng Wang,
Alan Yuille, and Cihang Xie. M-var: Decoupled scale-wise
autoregressive modeling for high-quality image generation.
arXiv preprint arXiv:2411.10433, 2024. 1

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. arXiv preprint
arXiv:abs/2112.10752, 2021. 2

[39] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient
second-order approximation for neural network compres-
sion. In NeurIPS, 2024. 2

[40] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
A simple and effective pruning approach for large language
models. In ICLR, 2024. 2

[41] Mingyuan Sun, Zheng Fang, Jiaxu Wang, Junjie Jiang, Delei
Kong, Chenming Hu, Yuetong Fang, and Renjing Xu. Opti-
mal brain apoptosis. In ICLR, 2025. 2, 7

[42] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: Llama for scalable image generation. arXiv
preprint arXiv:2406.06525, 2024. 1, 2, 7

[43] Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong
Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, and
Song Han. Hart: Efficient visual generation with hybrid au-
toregressive transformer. In ICLR, 2025. 1

[44] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. In NeurIPS, 2024. 1, 3,
6, 7

[45] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In ICML,
2016. 2

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

[47] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural
pruning via growing regularization. In ICLR, 2021. 2

[48] Huan Wang, Yulun Zhang, Can Qin, Luc Van Gool, and Yun
Fu. Global aligned structured sparsity learning for efficient
image super-resolution. TPAMI, 45(9):10974–10989, 2023.
2

[49] Jinhong Wang, Jian Liu, Dongqi Tang, Weiqiang Wang,
Wentong Li, Danny Chen, Jintai Chen, and Jian Wu. Scal-

able autoregressive monocular depth estimation. In CVPR,
2025. 1

[50] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. PVT
v2: Improved baselines with pyramid vision transformer.
Comput. Vis. Media, 8(3):415–424, 2022. 2

[51] Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan
Guo, Zhenheng Yang, Difan Zou, Jiashi Feng, and Xihui Liu.
Parallelized autoregressive visual generation. arXiv preprint
arXiv:2412.15119, 2024. 1, 2, 7

[52] Ma Xiaoxiao, Zhou Mohan, Liang Tao, Bai Yalong, Zhao
Tiejun, Li Biye, Chen Huaian, and Jin Yi. Star: Scale-wise
text-conditioned autoregressive image generation. arXiv
preprint arXiv:2406.10797, 2024. 1

[53] Rui Xie, Tianchen Zhao, Zhihang Yuan, Rui Wan, Wenxi
Gao, Zhenhua Zhu, Xuefei Ning, and Yu Wang. Lite-
var: Compressing visual autoregressive modelling with
efficient attention and quantization. arXiv preprint
arXiv:2411.17178, 2024.

[54] Qian Zhang, Xiangzi Dai, Ninghua Yang, Xiang An, Ziy-
ong Feng, and Xingyu Ren. Var-clip: Text-to-image gen-
erator with visual auto-regressive modeling. arXiv preprint
arXiv:2408.01181, 2024. 1

[55] Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala,
Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Xuezhe
Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Pre-
dict the next token and diffuse images with one multi-modal
model. arXiv preprint arXiv:2408.11039, 2024. 2

	Introduction
	Related Work
	Efficient Auto-regressive Image Generation
	Network Pruning

	Method
	Preliminaries on VAR
	OBS-Guided Structured Pruning for VAR
	Pre-Encode Calibration for Next-Scale VAR
	Progressive Scale-Aware Distillation (PSAD)

	Experimental Results
	Experimental Setups
	Main Results
	Ablation Study
	Edge Deployment

	Conclusion
	Generalization on LlamaGen
	Deployment Details and Further Evaluation
	 Visual Comparisons

